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This paper focuses on the application of the variance-based global sensitivity analysis for a topology derivative method in order
to solve a stochastic nonlinear time-dependent magnetoquasistatic interface problem. To illustrate the approach a permanent magnet
synchronous machine has been considered. Our key objective is to provide a robust design of rotor poles and of the tooth base in a
stator for the reduction of the torque ripple, while taking material uncertainties into account. Input variations of material parameters
are modeled using the polynomial chaos expansion technique, which is incorporated into the stochastic collocation method in order to
provide a response surface model. Additionally, we can benefit from the variance-based sensitivity analysis. This allows us to reduce
the dimensionality of the stochastic optimization problems, described by the random-dependent cost functional. Finally, to validate
our approach, we provide the two-dimensional simulations and analysis, which confirm the usefulness of the proposed method and
yield a novel topology of a permanent magnet synchronous machine.

Index Terms—Design optimization, Permanent magnet motors, Topology derivative, Robustness, Stochastic processes, Chaos
Polynomials, Uncertainty quantification.

I. INTRODUCTION

DUE to the several attractive features, such as high ef-
ficiency and power factor, high torque to weight ratio

and brushless construction, PM synchronous machines have
found recently a wide range of applications in the automotive
industry, e.g., [1]. However, in spite of their unquestionable
advantages, including also the field weakening capability of
1:5, the Electrically Controlled Permanent Magnet Excited
Synchronous Machine (ECPSM) [4], served here as a case
study, suffers inherently from the considerable level of the
torque pulsation [4], [5]. From this perspective the mitigation
of the torque fluctuations is a key issue for the design of a
permanent magnet (PM) machine. In the literature, various
methods for suppressing the ripple torque (RT) have been pro-
posed. In particular, they are devoted to both the deterministic
and stochastic optimization methods, e.g. [2] and [5]. Yet,
in many engineering applications, physical models are very
often affected by a relatively large amount of uncertainty [3].
Hence, there is a need to include uncertainty quantification
(UQ) in order to provide a reliable numerical simulation. For
this reason, in this paper we explore the stochastic collocation
method (SCM) combined with the polynomial chaos expansion
(PCE) [9]. A novel aspect of this work, in comparison with [6]
and [7], is to attain the low RT design of the ECPSM, when
taking the uncertainty of reluctivities into account. For this
purpose, the robust variance-based gradient is used to improve
the PM machine quality by minimizing variations of the output
performance function.

II. STOCHASTIC FORWARD PROBLEM

The electromagnetic behavior of the ECPSM is analyzed
here in a two-dimensional (2D) formulation, as in [5]. Thus, a
2D model can be described using the magnetic vector potential

A for the stochastic quasi-linear system of PDEs, defined on
t ∈ (0, T ] with T > 0 and x = (x, y)> ∈ D ⊂ R2 as
∇ ·
(
υFe

(
x, |∇A(θ)|2, ξ1

)
∇A(θ)

)
+ σ(ξ4)∂tA(θ) = Ji(x, t),

∇ · (υair (x, ξ2)∇A(θ)) = 0,

∇ · (υPM (x, ξ3)∇A(θ)) = ∇ · υPM (x, ξ3)M(x),
(1)

endowed with both boundary and initial conditions, where
θ := (x, t; ξ) ∈ D × (0, T ] × Ω with the domain D, which
refers to the sextant region; σ(ξ4) = σFe (1 + δ4ξ4) represents
conductivity. Ji(x, t), i = 1, 2, 3 denotes an excitation density
current and Ω is a sample space; M represents the remanent
flux density of the PM, while υ denotes the reluctivity. In
particular, a stochastic model for υ(·; ξ) is given by

υ(θ) =


υFe (x, |∇A(θ)|2)(1 + δ1ξ1) for x ∈ DFe

υair (x) (1 + δ2ξ2) for x ∈ Dair

υPM (x) (1 + δ3ξ3) for x ∈ DPM ,

(2)

where ξ = (ξ1, ξ2, ξ3, ξ4) is assumed to be random variables,
defined on some probability space (Ω,F ,P).

III. UQ ANALYSIS & POLYNOMIAL CHAOS EXPANSION

For the uncertainty quantification, we consider p(ξ) =
[υFe (ξ1), υair-gap (ξ1), υPM (ξ1), σ(ξ4)] ∈ Π, where ξj , j =
1, . . . , 4 are independent and identically uniformly distributed
in the interval [−1, 1]4 with the constant magnitude δj = 10%.
Thus, we assume a joint probability density function g : Π→
R, which is associated with P, and that A is a square integrable
function. Then, a response surface model of A is represented
by a truncated series of the PCE [9] in the form

A (x, t;p)
.
=

N∑
i=0

αi (x, t)Ψi (p) , (3)

with a priori unknown coefficient functions αi and predeter-
mined basis polynomials Ψi with the orthogonality property



E [ΨiΨj ] = δij . Here, E is the expected value, associated
with P. For the calculation of αi, we applied the SCM with
the Stroud-3 formula [7], which yields the solution at each
quadrature node ξ(k), k = 1, . . . ,K of the problem (1). Next,
the multi-dimensional quadrature rule with associated weights
wk is used for projecting function Ak into the basis Ψi as

αi(x, t)
.
=

K∑
k=1

A
(
x, t, p(k)

)
Ψi

(
p(k)

)
wk, (4)

Finally, the statistical moments are approximated by

E [A (x, t;p)]
.
= α0(x, t),Var [A (x, t;p)]

.
=

N∑
i=1

|αi(t)|2 (5)

assuming Ψ0 = 1 [9]. Based on (3), a variance-based sensitiv-
ity analysis can be performed.

IV. STOCHASTIC OPTIMIZATION PROBLEM

Finally, we formulate the stochastic magnetoquastatic inter-
face problem for the stochastic cost functional

F (t,p(ξ)) =

∫ T

0

[w1WB(θ) + w2 P (θ)] dt, (6)

where WB(θ) and P (θ) denote the stored magnetic energy and
the electromagnetic losses, while wi refer to the prescribed
weights. Furthermore, in order to reduce the dimensionality of
the optimization problem, defined by E[F (t,p(ξ))], we applied
the Sobol decomposition [8]

S(x, t)j :=
Vd

j

Var[A (x, t;p)]
, Vd

j :=
∑
i∈Id

j

|αi|2, (7)

where j = 1, . . . , 4, and sets I dj := {j ∈ N :
Ψj(p) is not constant in pj and degree(Ψi) ≤ d} with d being
the maximum degree of the Laguerre multivariate polynomials.

V. NUMERICAL RESULTS & CONCLUSIONS

We applied the proposed methodology to the optimization
of the ECPSM structure under uncertainties. Both structures
before and after the optimization are shown in Fig. 1.
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Fig. 1. ECPSM topology for (a) initial and (b) optimized configuration.

For the optimized configuration, the average of the RT mean
value, shown in Fig. 2, has been reduced by 60%, while the
variation has been minimized by 9%. Likewise, the mean value

of total losses (and the standard deviation), depicted in Fig. 3,
have been decreased by 28% in the average sense.

Fig. 2. Mean and standard deviation of electromagnetic torque for initial and
optimized ECPSM topology.

However, the decrease of the mean value of the electromag-
netic torque by 9% might be considered as a drawback of the
proposed approach and needs to be further investigated.

Fig. 3. Mean and standard deviation of total core losses for initial and
optimized ECPSM topology.
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